Stochastic Non-convex Optimization with Strong High Probability Second-order Convergence
نویسندگان
چکیده
In this paper, we study stochastic non-convex optimization with non-convex random functions. Recent studies on non-convex optimization revolve around establishing second-order convergence, i.e., converging to a nearly second-order optimal stationary points. However, existing results on stochastic non-convex optimization are limited, especially with a high probability second-order convergence. We propose a novel updating step (named NCG-S) by leveraging a stochastic gradient and a noisy negative curvature of a stochastic Hessian, where the stochastic gradient and Hessian are based on a propermini-batch of random functions. Building on this step, we develop two algorithms and establish their high probability second-order convergence. To the best of our knowledge, the proposed stochastic algorithms are the first with a second-order convergence in high probability and a time complexity that is almost linear in the problem’s dimensionality.
منابع مشابه
Stochastic Convex Optimization with Multiple Objectives
In this paper, we are interested in the development of efficient algorithms for convex optimization problems in the simultaneous presence of multiple objectives and stochasticity in the first-order information. We cast the stochastic multiple objective optimization problem into a constrained optimization problem by choosing one function as the objective and try to bound other objectives by appr...
متن کاملStochastic optimization with non-i.i.d. noise
We study the convergence of a class of stable online algorithms for stochastic convex optimization in settings where we do not receive independent samples from the distribution over which we optimize, but instead receive samples that are coupled over time. We show the optimization error of the averaged predictor output by any stable online learning algorithm is upper bounded—with high probabili...
متن کاملRandomized Smoothing for Stochastic Optimization
We analyze convergence rates of stochastic optimization algorithms for nonsmooth convex optimization problems. By combining randomized smoothing techniques with accelerated gradient methods, we obtain convergence rates of stochastic optimization procedures, both in expectation and with high probability, that have optimal dependence on the variance of the gradient estimates. To the best of our k...
متن کاملVariance-Reduced Proximal Stochastic Gradient Descent for Non-convex Composite optimization
Here we study non-convex composite optimization: first, a finite-sum of smooth but non-convex functions, and second, a general function that admits a simple proximal mapping. Most research on stochastic methods for composite optimization assumes convexity or strong convexity of each function. In this paper, we extend this problem into the non-convex setting using variance reduction techniques, ...
متن کاملO(logT) Projections for Stochastic Optimization of Smooth and Strongly Convex Functions
Traditional algorithms for stochastic optimization require projecting the solution at each iteration into a given domain to ensure its feasibility. When facing complex domains, such as the positive semidefinite cone, the projection operation can be expensive, leading to a high computational cost per iteration. In this paper, we present a novel algorithm that aims to reduce the number of project...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.09447 شماره
صفحات -
تاریخ انتشار 2017